Aggregated News

Synthetic genetic polymers, broadly referred to as XNAs, can replicate and evolve just like their naturally occurring counterparts, DNA and RNA, according to a new study published today (April 19) in Science. The results of the research have implications not only for the fields of biotechnology and drug design, but also for research into the origins of life—on this planet and beyond.

“It’s a breakthrough,” said Gerald Joyce of The Scripps Research Institute in La Jolla, California, who was not involved in the study—“a beautiful paper in the realm of synthetic biology.”

“It shows that you don’t have to stick with the ribose and deoxyribose backbones of RNA and DNA in order to have transmittable, heritable, and evolvable information,” added Eric Kool of Stanford University, California, who also did not participate in the research.

Over the years, scientists have created a range of XNAs, in which the ribose or deoxyribose portions of RNA and DNA are replaced with alternative molecules. For example, threose is used to make TNA, and anhydrohexitol is used to make HNA. These polymers, which do...