Aggregated News
The students in Anthony James’s basement insectary at the University of California, Irvine, knew they’d broken the laws of evolution when they looked at the mosquitoes’ eyes.
By rights, the bugs, born from fathers with fluorescent red eyes and mothers with normal ones, should have come out only about half red. Instead, as they counted them, first a few and then by the hundreds, they found 99 percent had glowing eyes.
More important than the eye color is that James’s mosquitoes also carry genes that stop the malaria parasite from growing. If these insects were ever released in the wild, their “selfish” genetic cargo would spread inexorably through mosquito populations, and potentially stop the transmission of malaria.
The technology, called a “gene drive,” was built using the gene-editing technology known as CRISPR and is being reported by James, a specialist in mosquito biology, and a half dozen colleagues today in the Proceedings of the National Academy of Sciences.
A functioning gene drive in mosquitoes has been anticipated for more than a decade by public health organizations as...